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Local Vs Global Time Series Forecasting

Local Models Global Models

Build one forecasting model per each series Build one forecasting model across many series

Fit local parameters separately on each series Fit global parameters that are the same across many series

Amount of parameters is small per series, but grows with amount of series Amount of parameters stays the same

Models need to be simple, as not much data Models can be more complex

Examples: SES, Theta, ETS, ARIMA, Prophet, TBATS Examples: ES-RNN, DeepAR, NBEATS, ...

For a given time-series a global model is typically more complex and less
interpretable than a local model
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Accuracy vs Interpretability in Machine Learning

Accuracy Interpretability

Trade-off between accuracy and interpretability

Christoph Bergmeir Time Series Interpretability November 16, 2021 5/ 63



Introduction Interpretability: LoMEF Interpretability: LIMREF Causal Inference

General Solution in Machine Learning: Post-hoc Local Model-Agnostic
Interpretability

Interpretability
Algorithms

LIME

SHAP

Anchor

LORE

LoRMIkA
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Local Interpretability For Classification

We want an explanation for one particular instance
Assumption: The behaviour of the instance to be explained is similar to the
behaviour of the instances in its neighbourhood

Select a neighbourhood

Sample new instances from the
neighbourhood (change the features)

Run your global model on the sampled
instances to get the labels

Train an interpretable model on the
neighbourhood plus generated labels,
to mimic the global model in the
neighbourhood of the instance
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Our goal

Transfer the concept of local interpretability as closely as possible to global
time-series forecasting models:

The global forecasting model is seen as a black-box model, the framework should
be model-agnostic

We want (local) explanations for one particular time series out of a big set of series

Our neighbourhood is a particular series (could also use more series chosen with a
similarity like DTW)

Problems:

How to sample from the neighbourhood?
How to run the global model on the samples?
Which local explainer to use?
How to train the local explainers on the output of the global model in the
neighbourhood?
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Proposed Solution

How to sample from the neighbourhood? / How to run the global model on the
samples?

No sampling, only actual instances from the neighbourhood: Use the fit of the
global model to the particular time series.

Input Window 3 Output Window 3

Input Window 1 Output Window 1

Input Window 2 Output Window 2

Input Window 3 Output Window 3

Sequence 

Global model forecasts from each output window

Local model forecasts for 
the global model forecasted 

values  

Generate forecasts from the global model (RNN)

Generate forecasts from the local models

Series A
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Proposed Solution Cont.

Using the in-sample fit of the global model without sampling may seem like a bad
idea, especially if the global model overfits.

But: Finding of Montero-Manso and Hyndman (2021):

The in-sample error of the global model is usually higher than the local model
while it generalizes better

Bootstrapping:

Generate new time series using bootstrapping, by bootstrapping the remainder of
STL decomposition from the original series using a Moving Block Bootstrap
(MBB) technique

Bootstrap the remainder of the fit of the time series using MBB
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Proposed Solution Cont.

We assume that local statistical methods are interpretable, though this can be
disputed.

The goal of our work is to make global models as interpretable as local models.

Which local explainer to use?

ETS

TBATS

MSTL & STL

Prophet


= Decompositions (trend, seasonality, remainder)

DHR-Arima

Theta

 = Coefficents
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Proposed Methodology
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Example 1

San Francisco Traffic Hourly Dataset

TBATS interpretation: Forecasts plot
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Example 1 Cont.

TBATS interpretation: Decomposition plot
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Example 2

Ausgrid Half-hourly Dataset

Prophet interpretation: Forecasts plot
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Example 2 Cont.

Prophet interpretation: Decomposition plot
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Example 3: Bootstrapped Models

Kaggle Web Traffic Dataset

ETS interpretation: Forecasts plot
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Example 3 Cont.

ETS interpretation: Chosen Model Summary Plot
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How to Evaluate Local Explainers?

Comprehensibility: How interpretable are the explanations?

Fidelity: How well does the explanation approximate the forecast of the global
model?

Consistency: How consistent are the explanations of the explainer across
multiple runs?

Accuracy: How well does an explainer forecast unseen data?

Christoph Bergmeir Time Series Interpretability November 16, 2021 19/ 63



Introduction Interpretability: LoMEF Interpretability: LIMREF Causal Inference

Fidelity Actual

Error can be sMAPE, MASE, RMSE, or MAE

Fidelity Actual = Error(global,explainer) - Error(global,actual)

Fidelity Actual < 0, the global model is closer to the explainer model than the
actual.

Fidelity Actual > 0, the global model is closer to the actuals than the explainer
model.

Christoph Bergmeir Time Series Interpretability November 16, 2021 20/ 63



Introduction Interpretability: LoMEF Interpretability: LIMREF Causal Inference

Fidelity Local

Fidelity Local= Error(global,explainer) - Error(global,local)

Verifies whether the local explainer is closer to the global model forecasts than the
local model to the global model forecasts.

Fidelity Local < 0, explainer model is closer to the global model.

Fidelity Local > 0, local model is closer to the global model.
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Fidelity with Explainer

Fidelity with Explainer = Error(global,explainer)− Error(local,explainer)

Verify whether the local explainer is closer to the global model than the local
model.

Fidelity with Explainer < 0, the explainer model is closer to the global model

Fidelity with Explainer > 0, the explainer model is closer to the local model
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Accuracy Explainer & Local model

Explainer & Local model = Error(actual,explainer) - Error(actual,local)

Verify whether the local explainer performs better than the local model.

Explainer & Local model < 0, the explainer model performs better than the
local model

Explainer & Local model > 0, local model performs better than the local
explainer.
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Accuracy Explainer & Global model

Explainer & Global model = Error(actual,explainer) - Error(actual,global)

Verify whether the local explainer performs better than the global model.

Explainer & Global model < 0, the explainer model performs better than the
global model

Explainer & Global model > 0, global model performs better than the local
explainer
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Accuracy Global and Local Model

Global and Local Model = Error(actual,global) - Error(actual,local)

Verify whether the global model performs better than the local model.

Global and Local Model < 0, the global model performs better than the local
model

Global and Local Model > 0, local model performs better than the global
model
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Experiments Results
Table 1: Mean SMAPE measures of the datasets for different local explainer models

Dataset Local
Explainer

Fidelity Actual Fidelity Local Explainer and
Local Model

Explainer and
Global Model

Fidelity with
Explainer

Global and
Local Model

nn5 weekly es -0.082 -0.066 -0.008 0.006 -0.072 -0.013
prophet -0.050 -0.024 -0.000 0.003 -0.011 -0.004
dhr arima -0.058 -0.021 -0.003 0.000 -0.011 -0.003
tbats -0.069 -0.036 -0.022 0.006 -0.022 -0.028

ausgrid weekly es -0.074 -0.043 -0.024 0.019 -0.001 -0.043
prophet -0.063 -0.020 -0.015 0.018 0.067 -0.033
dhr arima -0.082 -0.030 -0.015 0.009 0.038 -0.024
tbats -0.089 -0.022 -0.007 0.021 0.009 -0.028
stl -0.076 -0.039 -0.026 0.015 0.014 -0.041

kaggle web traffic daily ets -0.401 -0.210 -0.074 0.003 -0.196 -0.077
theta -0.404 -0.164 -0.047 0.003 -0.151 -0.049

sf traffic hourly tbats -0.017 -0.020 -0.006 0.000 -0.018 -0.006
prophet -0.011 -0.016 -0.013 0.008 -0.009 -0.021
dhr arima -0.013 -0.025 -0.014 0.000 -0.013 -0.014
mstl 0.000 -0.015 -0.006 0.010 -0.008 -0.016

ausgrid half hourly tbats -0.149 -0.197 -0.119 0.000 -0.168 -0.119
prophet -0.070 -0.237 -0.167 0.054 -0.207 -0.221
dhr arima -0.110 -0.121 -0.063 0.016 -0.019 -0.079
mstl 0.034 -0.160 -0.108 0.131 -0.180 -0.239
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Conclusions: LoMEF

General trade-off between accuracy and interpretability

Global Forecasting Models typically more complex than Local Models

Translate Local Model Agnostic Post-Hoc interpretability to Global Forecasting
Models

Neighbourhood - fit of the global model on original or bootstrapped series
Local interpretable models - Statistical models

Goal: Focus on interpretability, not predictive accuracy

Proposed local explainer performed models performed well in terms of Accuracy,
Fidelity, and Consistency

With this model, global models can be made as interpretable as local models
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Local Interpretable Model Agnostic
Rule-based Explanations for Forecasting

(LIMREF)
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Introduction

The method was developed for the “FUZZ-IEEE Competition on Explainable
Energy Prediction”, where it was the winning method

Competition: Forecast the monthly electricity consumption for 3248
households in a coming year

Half-hourly energy consumption data during for 1 year period
Prediction horizon - 12 months

Goal

Provide accurate and explainable forecasts for one year period
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Proposed Methodology

Accurate Predictions

Introduced an energy prediction framework using global models to gener-
ate accurate forecasts

Explaining Predictions

Introduced a novel algorithm to produce local rule-based explanations for
global time-series forecasting
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Methodogy: How to Generate Accurate Predictions

Our model is based on the model that achieved 4th place in a past
competition on the same data

Uses daily series to trade-off granularity and complexity
Learns across series (global models), which is state of the art in forecasting -
CIF2016, M4, M5 Competitions

Exogenous Variables
Calendar effects
Temperature - Uses bootstrapping to generate future temperatures

Original 
Temperature data 

for 2017

MBB (Moving Block 
Bootstrap)

Calculate the median 
for the bootstrapped 

time series

Estimate Temperature for the following year 
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Methodology: Proposed Solution

LoRMIkA ? −→ Time-series forecasting

Proposed novel local model-agnostic interpretability approach to explain the
forecast produced by global time-series models and produce Rule-based
explanations

Proposed framework will keep the global forecasting model as a
black-box model, in a model-agnostic way
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Methodology: LIMREF: Proposed Novel Interpretability Algorithm
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Methodology: LIMREF: Proposed Novel Interpretability Algorithm
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Methodology: LIMREF: Proposed Novel Interpretability Algorithm
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Methodology: LIMREF: Proposed Novel Interpretability Algorithm
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Methodology: LIMREF: Proposed Novel Interpretability Algorithm

Christoph Bergmeir Time Series Interpretability November 16, 2021 37/ 63



Introduction Interpretability: LoMEF Interpretability: LIMREF Causal Inference

Results: Examples for Each Rule Type

Table 2: Original Values of the Instance to be Explained

Mean Consumption Max Consumption Min Consumption Temperature Month Monthly Forecast

3.5708kWh 6.131kWh 0kWh 5.98C February 129.27kWh

Current Supporting Rules
(What are the current conditions that support the global model prediction?)

Your predicted consumption is 129.27kWh. Because you are in month
February.
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Results: Examples for Each Rule Type

Table 3: Original Values of the Instance to be Explained

Mean Consumption Max Consumption Min Consumption Temperature Month Monthly Forecast

3.5708kWh 6.131kWh 0kWh 5.98C February 129.27kWh

Current Contradicting Rules
(What are the current conditions that contradict the global model prediction?)

The conditions that currently exist that indicate a risk of
an increased consumption by 118.85kWh for the particular
month are 5.82 < average temperature ≤ 6.20 & month =
February & minimum consumption ≤ 0.00.
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Results: Examples for Each Rule Type

Table 4: Original Values of the Instance to be Explained

Mean Consumption Max Consumption Min Consumption Temperature Month Monthly Forecast

3.5708kWh 6.131kWh 0kWh 5.98C February 129.27kWh

Hypothetical Supporting Rules
(What are the hypothetical conditions that support the global model prediction?)

The conditions that need to be satisfied to maintain the monthly predicted
consumption would be 6.01 < average temperature ≤ 6.31.
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Results: Examples for Each Rule Type

Table 5: Original Values of the Instance to be Explained

Mean Consumption Max Consumption Min Consumption Temperature Month Monthly Forecast

3.5708kWh 6.131kWh 0kWh 5.98C February 129.27kWh

Hypothetical Contradicting Rules
(What are the hypothetical conditions that could potentially invert the global model
prediction? Counterfactual Rules)

If you have mean consumption > 9.16 it will increase your consumption
by 275.53kWh.
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A Complete Explanation of LIMREF

Table 6: Original Values of the Instance to be Explained

Mean Consumption Max Consumption Min Consumption Temperature Month Monthly Forecast

3.463kWh 6.973kWh 0kWh 6.308C February 119.01kWh

Your predicted consumption is 119.02kWh. Because you have month=February.
If you have mean consumption > 13.99 it will increase your consumption by
388.48kWh. The conditions that currently exist that indicate a risk of an in-
creased consumption by 179.55kWh for the particular month are 6.05 < average
temperature ≤ 6.31 & month=February & min consumption ≤ 0.00. The con-
ditions that need to be satisfied to maintain the monthly predicted consumption
would be average temperature > 6.31. Please note that here the mean, min and
max consumption is calculated over the last 20 days. The temperature is the
average temperature throughout the predicted month.
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Conclusions: LIMREF

Provide accurate and self-explaining predictions of the future monthly electricity
consumption in a coming year

Accurate predictions - Train a global model (Expectile Regression)
Interpretable predictions - Proposed a novel explainability algorithm

Explanations

Simple rules
Complete rules
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Causal Inference Using Global
Forecasting Models for Counterfactual

Prediction
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COUNTERFACTUAL
ARTIFICIAL

IDEA: to forecast an artificial counterfactual 
trend for the units affected by intervention 
(treated units) based on a large-dimensional 
panel of observed time-series from a pool of 
untreated peers (control units)

0



HOW TO MEASURE

THE ACCURACY 
OF A

COUNTERFACTUAL?

PLACEBO TESTS:

1. NULL EFFECT of the 
treatment for the 
control units: errors of 
the control group (= 
effect of the intervention 
over the controls) must 
be very low 

2. SIGNIFICANT DIFFERENCE 
between the errors from 
treated and control units (error 
gaps must be statistically 
significantly different from each 
other) 

1intervention

error gap treated

error gap control

observed treated unit

counterfactual of treated unit

observed control unit

forecasting control unit (placebo test)
Must be 

significant
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EXPERIMENTS
OUR

AUSTRALIAN EMS CALLS

79 time series

Training period: 41 points

Forecasting period: 12 points

Intervention: Effect of the 
increase of number liquor licenses  
over the EMS calls demand

911 EMERGENCY CALLS

62 time series

Training period: 41 points

Forecasting period: 7 points

Intervention: Effect of the COVID-
19 lockdown over 911 calls 
demand
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a p-value of 0.021



EXPERIMENTS
OUR

AUSTRALIAN EMS CALLS

79 time series

Training period: 41 points

Forecasting period: 12 points

Intervention: Effect of the 
increase of number liquor licenses  
over the EMS calls demand

911 EMERGENCY CALLS

62 time series

Training period: 41 points

Forecasting period: 7 points

Intervention: Effect of the COVID-
19 lockdown over 911 calls 
demand

I.
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e
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-w
o
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d
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e

ts

Causal-effect

p-value of 0.004604



EXPERIMENTS – Simulated datasets
Monte Carlo experiment

OUR

5

S.2) Non-linear DGP: SETAR + Var(3,4)S.1) Linear DGP: ARIMA + Var(3,4)

a. Exogenous Variable (regressor) = RGCE (with 
four lags) using a stationary LINEAR ARIMA DGP to 
build 100 time-series

b. Endogenous Variables on VAR(3,4) 

multivariate DGP process + inclusion of 1 regressor 

(RGCE):

o RCPI --> within NN modelling will enter as 

exogenous 

o RGDPG --> within NN modelling will enter 

as exogenous

o UNRATE --> within NN modelling will enter 

as endogenous

a. Exogenous Variable (regressor) = RGCE (with 
four lags) using NONLINEAR SETAR DGP to build
100 time-series

100 time-series

• 70 control

• 30 treated



Exogenous 

Variable 

(regressor) => 

RGCE

Intervention:
Adding an increase of 3.5% in the government 
expenditures from the period 224 towards 

causes causesUsing VAR(3,4) estimator:

• quarterly data
• Training period: 199 time points
• Horizon forecasting: 21 time points



RESULTS
FOR SIMULATION 2: 
NON-LINEAR DGP

OUR

7

VAR(3,4) DGP for endogenous and SETAR DGP for exogenous

treated units

control units
forecasting: DeepCPNet-without ExVar 
(univariate forecasting) 

observed values

forecasting: DeepCPNet-with ExVar 
(multivariate forecasting) 
true counterfactual

true 
counterfactual



Model meanSMAPE medianSMAPE

DeepCPNet 0.03578 0.03351

DeepCPNet_EX 0.00672 0.00799

Arima 0.06597 0.07375

VAR4 0.05156 0.06027

CausalImpact 0.00684 0.00663

SCM 0.03515 0.02812

Model meanSMAPE medianSMAPE

DeepCPNet 0.03457 0.03833

DeepCPNet_EX 0.01406 0.01227

Arima 0.05706 0.06374

VAR4 0.01771 0.01582

CausalImpact 0.02478 0.02260

SCM 0.02832 0.03066

Control Units Prediction Errors Counterfactual Prediction Errors

DeepCPNet achieves the best results in the scenario with non-linear relationships across the time series

RESULTS for Simulated Data – simulation 2 using non-linear DGP:



Idea: What about Probabilistic Forecasting?

❑ Study of target interventions affecting only the tails or the variance of 
the treated units’ distribution rather than their mean or median (i.e., 
interventions affecting only parts of the distribution)

❑ Inspection of the impacts of interventions over skewed or heavy-
tailed distributions

❑ It allows for decision-making under uncertainty by precisely 
predicting intervals to quantify forecast uncertainties



COUNTERFACTUAL and CAUSAL EFFECT  
distribution predictions

OUR NOVELTY PROBABILISTIC GFM

1. Global

modelling

2. Recurrent NN

Modelling - LSTM
3. Probabilistic 

forecasting

SOLUTION:
global+ Recurrent NN + 

probabilistic forecasting and 
inference framework to perform 

counterfactual distributional
predictionsDeepProbCP:

10
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INTERVENTION OVER TREATED UNITS
SIMULATION DESIGN OF THE 

• Treated units: 50 units 
(randomly chosen)

• length = 220 
observations

Intervention: 

• how: adding a constant 
of 1.574 (= 1 standard 
deviation from the 
treated units before the 
intervention) for the 
values > quantile 90%

• The intervention 
causes:

+ 1.5% in the median
+ 4.3% in the mean
> + 25% left tail



STEPS OF

DeepProbCP:

12

Step 2) The step 1 is performed for each chosen 
quantile: 

Step 3) Each forecasted quantile from step 2 is used 
to build the quantile distribution

• using cubic splines functions, we interpolate 
each one the forecasted quantiles to build the 
“Quantile Distribution Function”.

• we also estimate the quantile distribution 
function by splines for the observed data 
post-intervention

Step 1) DeepCPNet (GFM-RNN-LSTM based stacked 
model):

• the MAE error function is replaced by the 
“pinball loss” (quantile loss) during the 
training and hyperparameter tuning processes

• estimate the future trajectory for each control 
and treated time series post-intervention, 
based on their (and covariates) pre-
intervention data:

where 𝑚𝐺 ∙ is a multi-layer RNN with LSTM cells 
under the stacked design:

𝜏… some quantile
y … observed data
ො𝑦 … forecast data
∙ + = max(0,∙)

J  … each time series
T0 … intervention time
Θ … set of parameters
ht … hidden states

where:



EXPERIMENTS (1)
Results of the

1) Simulated Data:

a. Simulated intervention

b.     Estimated quantile distributions using splines
Treated units:

Control units:



EXPERIMENTS (1)
Results of the

1) Simulated Data*:

c.   Placebo Tests

d.   Performance comparing with benchmark models

Error gaps 
estimation for 
future 
trajectory:

Causal Effect 
errors 
comparing 
with the 
recovered 
true causal 
effect:

Null effect of the 
intervention over the control 

units:

* 51 control time series and 50 treated time series using the nonlinear DGP 
employing SETAR models



EXPERIMENTS (2)

Results of the

2) Real-world data – Australian EMS calls:

a.  Intervention: b.     Estimated quantile distributions using splines

Treated units:



Conclusions

❑ Global RNN-based approaches (combination of global 
modelling, stacked architecture, LSTM cells, and COCOB 
optimizer) should emerge as a new generation of 
machine learning models in the causal inference task of 
predicting counterfactual outcomes, not being 
restricted to the pure forecasting tasks. 

❑ The powerful causal inference mechanism developed in 
this research can contribute to leverage the estimation 
of causal effect’s measurement which is crucial to guide 
and support the policymakers: (i) in their decision 
making processes, and (ii) evaluation of their policies



With this causality-inspired DNN model combined 
with non-parametric probabilistic techniques we 
can:

➢ improve the generalisation and adaptivity of the 
framework by leveraging the causality analysis to 
achieve reliable causal effect identifications in real-
world scenarios.

➢ enrich the decision-making process with powerful 
tools capable of not only delivering point 
predictions of counterfactuals but also predictions 
of their distributions.

Conclusions Cont.
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